
W H I T E PA P E R – S E P T E M B E R 2 0 2 0

Targeted Snake
Ransomware

Threat Intelligence Report

James Haughom,
VMware Threat Analysis Unit

W H I T E PA P E R | 2

Targeted Snake Ransomware

Table of Contents

Executive Summary. . 3

Key Points	 3

Malware Triage . . 3

Technical Deep Dive. . 4

Targeting Honda. . 6

Stopping Windows Processes/Services. . 8

WMI/COM Capabilities and Interactions. . 13

Blacklist/Whitelist Decryption. . 14

Encryption Routine. . 16

Ransom Note. . 21

Conclusions. . 22

Appendix. . 23

W H I T E PA P E R | 3

Executive Summary
In the last few weeks our telemetry revealed the submission of a Windows executable
Ransomware sample, written in Go, which is related to the Snake Ransomware family.
This ransomware specifically targeted the Honda network, and was found to be quite
sophisticated. The ransomware appears primarily to be targeting servers, as it has logic
to check for the type of host it is infecting, and it attempts to stop many server-specific
services/processes. Hard-coded strings are encrypted, source code is obfuscated, and
the ransomware attempts to stop anti-virus, endpoint security, and server log monitoring
and correlation components. This ransomware family has ties to Iran and has historically
been observed targeting critical infrastructure such as SCADA and ICS systems. More
recently, the malware has been observed targeting healthcare organizations. Most
interestingly, and unlike other variants, the malware analyzed in this threat report does
not drop any ransom note to desktop machines.

Key Points
•	Sophisticated/targeted Go ransomware of the Snake family

•	Requires execution in Honda’s network

•	Writes “EKANS” (“SNAKE” backwards) as well as a custom stub
to the tail of encrypted files

•	Leverages AES-256 algorithm for encrypting files on attacked hosts

•	Unique encryption key is generated for each encrypted file

•	Encryption key is encrypted with an RSA-2048 public key

•	Hard-coded strings are each encrypted with a simple algorithm

•	Contains source code obfuscation
	 – Compile-time debugging symbols/names are randomized
	 – Strings are encrypted to hinder static analysis tools

•	Appears to target servers, although it will also infect desktops

•	Kills AV, EDR, and SIEM components

•	Leverages COM/WMI execution to avoid detection

Malware Triage
The ransomware is a 32-bit Windows Portable Executable written in Go. Go programs
are cross-platform (but are compiled for a target platform such as 64bit Windows) and
are completely standalone, meaning they will execute properly even without having a
Go interpreter installed on a system, as if written in C/C++. This is achieved through Go
statically compiling necessary libraries (packages), which then invoke the standard
Windows APIs. Due to this layer of abstraction, analyzing static properties, such as file
import tables, is not helpful, as these are used by non-malicious Go library “middleware”
code. Other avenues of basic static analysis, such as strings, were also not interesting,
as we later found that the malware decrypted these values at runtime.

MD5 ed3c05bde9f0ea0f1321355b03ac42d0

SHA1 e2e14949d0cbc14cd3893da035cc13b509e70a18

SHA256 d4da69e424241c291c173c8b3756639c654432706e7def5025a649730868c4a1

Imphash 96c44fa1eee2c4e9b9e77d7bf42d59e6

SSDEEP 49152:nlpnltflwvk8sd4zs22ahkjzf/3odd8l9akyyxp02+:ntrwkmkff

File Type Win32 Portable Executable (PE EXE)

File Size 3965952 bytes

Table 1: Static Properties.

Targeted Snake Ransomware

W H I T E PA P E R | 4

Targeted Snake Ransomware

Technical Deep Dive
As previously mentioned, the Snake ransomware is written in Go, which makes it
challenging to reverse engineer, as well as to detect maliciousness via static file analysis.
Interesting functionality in Go binaries begins with an init() function that initializes
packages necessary for the binary to run properly (see Figure 1).

Figure 1. Primary init() function.

These package and function names can be resolved with the help of tools, such as
IDAGolangHelper. The malware author obfuscated many names at the source code
level (see Figure 2).

W H I T E PA P E R | 5

Targeted Snake Ransomware

Figure 2: Primary init() function with resolved names.

Following the init() function, the control flow of the application is passed to the main()
function. The true functionality of the ransomware can be seen being invoked in the
following code block, which contains function names that we manually identified and
labeled as shown in Listing 1.

mov [esp+48h+var_48], ecx
mov [esp+48h+var_44], edx
call call_runtime_gopanic
call main_kill_services
call main_kill_processes
call main_COM_routine
call main_decrypt_whitelist_and_blacklist
mov eax, [esp+48h+var_28]
mov [esp+48h+var_48], eax
call main_encryption_routine
call main_disable_firewall
add esp, 48h
retn

Listing 1: Important code block in main() with renamed functions.

W H I T E PA P E R | 6

Targeting Honda
Prior to showing any behavior, the malware first performs a check to confirm that it
is running in the target network. The sample is clearly targeting Honda, as it will only
execute if it is able to properly resolve an internal hostname.

A Windows Management Instrumentation (WMI) query is executed via the Windows
Component Object Model (COM), which identifies the DomainRole of the victim machine.
The function returns 1 if the type is a Domain Controller, or else it will return 0. It performs
this check to see if the DomainRole return value is 4 or 5, as seen in Figure 4 (see Table 1
for the meaning of each DomainRole type).

0 {"Standalone Workstation"}

1 {"Member Workstation"}

2 {"Standalone Server"}

3 {"Member Server"}

4 {"Backup Domain Controller"}

5 {"Primary Domain Controller"}

Table 2: DomainRole types.

Figure 3: Domain Controller check.

If the victim machine is a Domain Controller, the malware will drop a ransom note and exit.

Figure 4: Drop ransom note if a Domain Controller.

Targeted Snake Ransomware

W H I T E PA P E R | 7

Listing 2 shows the Go net.LookupIP procedure used to get the IP address of the internal
hostname.

.text:00553D69 lea eax, aMdsHondaCommap ; MDS.HONDA.COM

.text:00553D6F mov [esp+4Ch+var_4C], eax

.text:00553D72 mov [esp+4Ch+var_48], 0Dh

.text:00553D7A call net_LookupIP

Listing 2: Lookup procedure.

If the hostname is not resolved, the error message displayed in Figure 4 is decrypted, and
the malware will exit. If the hostname is resolved, the ransomware performs a secondary
check to see if the hostname resolves to the expected IP address (170.108.71[.]153)
through the runtime.memequal function displayed in Listing 3.

.text:00553DDE call net_IP_String

.text:00553DE3 mov eax, [esp+4Ch+var_3C]

.text:00553DE7 mov ecx, [esp+4Ch+var_40]

.text:00553DEB cmp eax, 0Dh

.text:00553DEE jz short loc_553DF7

.text:00553DF0

.text:00553DF0 loc_553DF0: ; CODE XREF: main_domain_check+C4↓j

.text:00553DF0 movzx eax, [esp+4Ch+var_2D]

.text:00553DF5 jmp short loc_553DA5

.text:00553DF7 ; --

.text:00553DF7
.text:00553DF7 loc_553DF7: ; CODE XREF: main_domain_check+9E↑j
.text:00553DF7 mov [esp+4Ch+var_4C], ecx
.text:00553DFA lea ecx, a17010871153814;170.108.71.153
.text:00553E00 mov [esp+4Ch+var_48], ecx
.text:00553E04 mov [esp+4Ch+var_44], eax

Listing 3: IP address check.

The expected IP address is decrypted in memory (Figure 5) for the check mentioned
above.

Figure 5: The IP address to be checked is loaded into memory.

If the domain properly resolves to the IP address 170.108.71[.]153, the malware will
continue execution. If not, it will exit as shown in Figure 6 on the following page.

Targeted Snake Ransomware

W H I T E PA P E R | 8

Figure 6: Branch exiting the program.

The true functionality of the ransomware then begins with the RSA-2048 public key
(Listing 4) being loaded, decrypted, and decoded. It will later be used to encrypt each
AES-256 key used for file encryption.

-----BEGIN RSA PUBLIC KEY-----
MIIBCgKCAQEAt1GCKUHXITsiWc1d8V0vo1Y9Jm18RDZEmMS6OkHI7pZT0RHAThlR
\nBFITZY9bXrl6RFdUwmIX0WYn5ZqIlhLAEe1cqd8RpJ/KK2OeiTn0CJ1CGmOOJv
fm\n5rFa8whVAU9cnh/iVCcf+aEHJVcHhzB5tTtiT3lBIdfzaLL6GR5EmytbQ3V3
O1Uk\nY4FCKxYOMVoPzPtRG3vo3688uUWpZIKBV7e6dht mAhuCEIlRGcdpAEf6f
4zUUYf\ndtHcDafMVEA4Sy/DDsd76wAyBIM0XKLv1+vH476TN1K1tIRBrR98QFl5m
lXkgqz6\nh+Wpb/5KYWWvG0ZLZcu6eWOCGmLEmorvWQIDAQAB
-----END RSA PUBLIC KEY-----

Listing 4: RSA public key used for encryption.

Stopping Windows Processes/Services
The next routine the malware enters is to terminate target processes and services. This
is primarily to ensure that any pre-existing handles to critical files (databases, documents,
etc.) are released, so that the malware can successfully encrypt important data (Figure 7
shows some of the decryption routines). If these handles are not released from existing
processes/services, then the malware will be unable to obtain handles to encrypt these
files. The malware also targets processes/services associated with administration software
likely to protect itself and “lock out” admins. Like previous versions of Snake, the malware
kills processes associated with ICS/SCADA systems, such as General Electric Proficy
Software. This is likely leftover/included from previous versions of Snake, as this particular
version is obviously targeting the automotive industry and Microsoft Windows
environments. Other processes/services the malware kills are intended to evade
detection, as it kills AV/EDR, such as Sophos and Cylance, but also services associated
with logging, such as Splunk Windows Eventlog Forwarders.

Targeted Snake Ransomware

W H I T E PA P E R | 9

All interesting strings within the malware sample are encrypted, and each string is
assigned a unique XOR key of the same length as the string itself. Each string’s decryption
routine uses the same algorithm.

(xor_key[i] + (2 * i)) ^ encrypted_string[i]

Listing 5: Decryption algorithm.

Figure 7: Decryption routine.

The hexdump in Figure 8 shows an example of the buffer containing the output, input,
and key of the string decryption routine:

Line 1: Encrypted string(input)

Line 2: 16 null bytes

Line 3: XOR Key (unique to each string)

Line 4: Decrypted String(output)

Figure 8: Example of buffer used by the decryption routine.

Example of first char from above being decrypted via Python:

>>> for i in range(len(key)):
... dec_string += chr((key[i] + i * 2) ^ enc_string[i])
...
>>> dec_string
‘allprofiles’

Listing 6: Example of decryption of first char.

Targeted Snake Ransomware

W H I T E PA P E R | 1 0

Many of these string decryption routines are called from this large function. We cannot
confirm if it is purposefully obfuscated or simply the result of the combination of Go +
compiler optimization.

Next, a list (see Appendix) of process names is decrypted using the string decryption
routine mentioned earlier.

Figure 10: Process list in memory.

After target process names are decrypted, CreateToolhelp32Snapshot is called to get a list
of running processes.

Figure 11: Call to WinAPI function to get process list.

The malware then begins iterating through this list via Process32(First|Next)W.

Figure 12: Iterating through process list.

Targeted Snake Ransomware

W H I T E PA P E R | 1 1

Figure 13. Running processes in memory.

The sample then calls strings.EqualFold to compare each running process name against
the list of decrypted process names.

Figure 14. Checking running process against list of targeted processes.

If the process name matches, the malware will obtain a handle to said process and kill it.

.text:00554539 mov [esp+1Ch+arg_8], 0

.text:00554541 mov [esp+1Ch+arg_C], 0

.text:00554549 mov [esp+1Ch+var_1C], 1

.text:00554550 mov byte ptr [esp+1Ch+var_18], 0

.text:00554555 mov eax, [esp+1Ch+arg_0]

.text:00554559 mov [esp+1Ch+var_14], eax

.text:0055455D call syscall_OpenProcess

.text:00554562 mov eax, [esp+1Ch+var_10]

.text:00554566 mov ecx, [esp+1Ch+var_8]

.text:0055456A mov edx, [esp+1Ch+var_C]

.text:0055456E test edx, edx

.text:00554570 jnz short loc_5545CC

.text:00554572 mov [esp+1Ch+var_4], eax

.text:00554576 mov [esp+1Ch+var_14], eax

.text:0055457A mov [esp+1Ch+var_1C], 0Ch

.text:00554581 lea ecx, off_632340

.text:00554587 mov [esp+1Ch+var_18], ecx

.text:0055458B call runtime_deferproc

.text:00554590 test eax, eax

.text:00554592 jnz short loc_5545C2

.text:00554594 mov eax, [esp+1Ch+var_4]

.text:00554598 mov [esp+1Ch+var_1C], eax

.text:0055459B mov eax, [esp+1Ch+arg_4]

.text:0055459F mov [esp+1Ch+var_18], eax

.text:005545A3 call syscall_TerminateProcess

Listing 7. Process termination routine.

Targeted Snake Ransomware

W H I T E PA P E R | 1 2

If unable to kill the process, the malware decrypts a hard-coded error message.

130460C0 63 61 6E 74 20 6B 69 6C 6C 20 70 72 6F 63 65 73 cant kill proces
130460D0 73 20 25 76 20 3A 20 25 76 0A 00 00 00 00 00 00 s %v : %v......

Listing 8. Error message for killing processes.

The malware then repeats this process, but this time for services.

.text:0054CB2B mov [esp+0E8h+var_98], ecx

.text:0054CB2F mov edx, [esp+0E8h+arg_0]

.text:0054CB36 mov ebx, [edx]

.text:0054CB38 mov [esp+0E8h+var_E8], ebx

.text:0054CB3B mov [esp+0E8h+var_E4], 0

.text:0054CB43 mov [esp+0E8h+var_E0], SERVICE_WIN32

.text:0054CB4B mov [esp+0E8h+var_DC], SERVICE_STATE_ALL

.text:0054CB53 mov [esp+0E8h+var_D8], eax

.text:0054CB57 mov [esp+0E8h+var_D4], ecx

.text:0054CB5B lea eax, [esp+0E8h+var_9C]

.text:0054CB5F mov [esp+0E8h+var_D0], eax

.text:0054CB63 lea ebx, [esp+0E8h+var_B8]

.text:0054CB67 mov [esp+0E8h+var_CC], ebx

.text:0054CB6B mov [esp+0E8h+var_C8], 0

.text:0054CB73 mov [esp+0E8h+var_C4], 0

.text:0054CB7B call agfkpb_EnumServicesStatusEx

Listing 9. Obtaining list of services.

Services are terminated via OpenService + Service Control (calls ControlService).

 OpenService(v40, a1, a2, v27, v28, v29); // get handle to service
 if (v28)
 {
 v42 = v29;
 v41 = v28;
 main_ifdjiignopgdooedfgie_func1(v11, v25);
 v4 = v41;
 if (v41)
 v4 = *(_DWORD *)(v41 + 4);
 v51 = v4;
 v52 = v42;
 fmt_Errorf(v12, v25, &v51, 1, 1, v29, v30);
 return runtime_deferreturn(v13);
 }
 v39 = v27;
 v26 = v27;
 if (runtime_deferproc(12, &off_6275CC))
 return runtime_deferreturn(v10);
ptr_Service_Control(v39, a3, v26, v27, v28, v29, v30, v31, v32); /* kill
service */

Listing 10. Service termination routine.

Targeted Snake Ransomware

W H I T E PA P E R | 1 3

WMI/COM Capabilities and Interactions
The string decryption routine is applied to a string that decrypts to a reference to the WMI
scripting library.

Figure 15. Reference to WbemScripting library in memory.

This string is decrypted shortly after COM library initialization (screenshot below), and an
instance of this object is then created via CoCreateInstance.

Figure 16. Initialization of COM library.

An instance of WbemScripting.SWbemLocator is also created

Figure 17. Instance of WBemLocator.

The malware then decrypts a handful of strings, the two most interesting being
root\\cimv2 and ConnectServer.

Figure 18. WMI-related strings decrypted.

Two more strings are decrypted, regarding the execution of a WMI query (WQL).

Figure 19. WMI query decrypted.

Targeted Snake Ransomware

W H I T E PA P E R | 1 4

COM/WMI Capabilities
Classes:

•	WbemScripting

•	WbemLocator

Methods:

•	ConnectServer

•	ExecQuery

•	Add

Blacklist/Whitelist Decryption
The malware then enters a routine to decrypt a few important lists of files and directories
to both avoid and target. The first list of strings decrypted consists of file extensions that
the malware targets.

Figure 20. Target file extensions.

Another batch of filenames and extensions are then decrypted; these are whitelisted
names for select System/Program directories.

Figure 21. File extensions select whitelist.

Targeted Snake Ransomware

W H I T E PA P E R | 1 5

More strings are decrypted, this time for whitelisted directories (selective) and filenames
for the encryption routine.

Figure 22. Select folders.

Figure 23. Select files.

The malware then calls GetLogicDriveStringsW, which will be modified and passed to
GetDriveTypeW, whose results are checked to determine if the drive is fixed or removable.

Figure 24. Call to GetDriveType.

.text:005170EE mov [esp+138h+var_138], ecx

.text:005170F1 mov [esp+138h+var_134], eax

.text:005170F5 mov [esp+138h+var_130], 1

.text:005170FD mov [esp+138h+var_12C], 1

.text:00517105 call __ptr_LazyProc_Call

.text:0051710A mov eax, [esp+138h+var_128]

.text:0051710E test eax, eax

.text:00517110 jz loc_517659

.text:00517116 mov [esp+138h+var_100], eax

.text:0051711A cmp eax, 2 ; DRIVE_REMOVABLE

.text:0051711D jz short loc_51714B

.text:0051711F cmp eax, 3 ; DRIVE_FIXED

.text:00517122 jz short loc_51714B

Listing 11. Checking drive type.

Targeted Snake Ransomware

W H I T E PA P E R | 1 6

Encryption Routine
The file encryption routine follows common ransomware techniques: crawl each directory,
obtain handles to each targeted file type, and perform the encryption.

Figure 25. Control-flow graph of the file encryption routine.

The Go file package is used heavily throughout the encryption routine. Iterating through
the file system, the malware repeatedly calls file.ReadDir, file.Open, file.Seek, and
file.Read. An AES-256 key is generated via the Go rand.Read function for each individual
file. The 32-byte key is then passed to the file encryption routine.

crypto_rand_Read(key_buffer, key_len);
call_runtime_gopanic(key_len, v20);
main_encrypt_file(v35, key_buffer, key_len, v20, v34, v24, v27, v27);

Listing 12. Encryption routine.

Example of output of rand.Read (AES-256 key).

Figure 26. Random 32 byte sequence to be used as key.

Targeted Snake Ransomware

Get path to target file

Call
encryption

routine

Encryption
Error

Loop

W H I T E PA P E R | 1 7

Crypto Routine for encrypting contents of each target file:

1.	Generate key – rand.Read (32 bytes)

2.	Create Cipher Block – aes.NewCipher AES-256

3.	Create crypto stream – cipher.NewCTR

4.	Read target file into buffer – file.Read

5.	Encrypt contents of file buffer – XORKeyStream

6.	Overwrite file on disk with ciphertext – file.WriteAt

7.	Loop/Find next file:

a. 	Control flow is transferred via deferred functions

b. 	WaitGroup is used to ensure that important crypto tasks complete
	 prior to moving to the next task

c. runtime.chanrecv2 is used to help the loop to get next file path

The figure below shows how the malware author sets a deferred function to close the file
it is encrypting once the crypto routine finishes.

.text:0055218C mov [esp+80h+arg_C], 0

.text:00552197 mov [esp+80h+arg_10], 0

.text:005521A2 mov eax, [esp+80h+arg_0]

.text:005521A9 mov [esp+80h+var_80], eax

.text:005521AC mov ecx, [esp+80h+arg_4]

.text:005521B3 mov [esp+80h+var_7C], ecx

.text:005521B7 mov [esp+80h+var_78], 2

.text:005521BF mov [esp+80h+var_74], 1EDh

.text:005521C7 call os_OpenFile

.text:005521CC mov eax, [esp+80h+var_70]

.text:005521D0 mov ecx, [esp+80h+var_6C]

.text:005521D4 mov edx, [esp+80h+var_68]

.text:005521D8 mov [esp+80h+arg_C], ecx

.text:005521DF mov [esp+80h+arg_10], edx

.text:005521E6 test ecx, ecx

.text:005521E8 jnz loc_552509

.text:005521EE mov [esp+80h+var_2C], eax

.text:005521F2 mov [esp+80h+var_78], eax

.text:005521F6 mov [esp+80h+var_80], 0Ch

.text:005521FD lea ecx, off_6320F4 ; os__ptr_File_Close

.text:00552203 mov [esp+80h+var_7C], ecx

.text:00552207 call runtime_deferproc ; set deferred func

Listing 13. Setting deferred function.

This is the end of the crypto routine, indicating that the deferred function will run and the
file handle will be closed.

.text:00552284 loc_552284: ; CODE XREF:
main_main_crypto+14D↓j
.text:00552284 lea ecx, off_6C5410
.text:0055228A mov [esp+80h+arg_C], ecx
.text:00552291 mov [esp+80h+arg_10], eax
.text:00552298 nop
.text:00552299 call runtime_deferreturn ; exec
deferred func
.text:0055229E add esp, 80h
.text:005522A4 retn

Listing 14. Invocation of deferred function.

Targeted Snake Ransomware

W H I T E PA P E R | 1 8

Before any of this encryption routine is executed, the malware first checks to see if it has
already encrypted the file. It does this by checking for the known Snake Ransomware
“EKANS” string at the end of the file.

.text:0055221B call check_EKANS_string

.text:00552220 movzx eax, byte ptr [esp+80h+var_7C]

.text:00552225 mov ecx, [esp+80h+var_6C]

.text:00552229 mov edx, [esp+80h+var_70]

.text:0055222D mov [esp+80h+arg_C], edx

.text:00552234 mov [esp+80h+arg_10], ecx

.text:0055223B test edx, edx

.text:0055223D jnz loc_5524EF

.text:00552243 test al, al

.text:00552245 jz short goto_encrypt_file

Listing 15. Encrypt file only if EKANS tail is not found.

This is a hexdump of the tail of the target file for encryption.

Figure 27. Tail of target file.

Checking whether the EKANS tag is in the tail of file (last 5 bytes) is performed through
the runtime.memequal function.

Figure 28. Checking for the EKANS tail.

If the EKANS string is found, a message is decrypted “already encrypted”. This file will
then be skipped, and the next file in the directory is passed to the encryption routine.

Figure 29. Message if file is already encrypted.

If not yet encrypted, the target file will be passed to the file encryption routine. The
randomly generated 32-byte string will be passed to aes.NewCipher as a key to create a
new cipher block. This cipher block is passed to crypto.cipher.NewCTR to create the
stream used for encryption, and the file.Read function is then called to get the contents of
the target file. (See Listing 16 on the following page.)

Targeted Snake Ransomware

W H I T E PA P E R | 1 9

.text:00551ED3 call crypto_aes_NewCipher

.text:00551ED8 mov eax, [esp+70h+var_58]

.text:00551EDC mov [esp+70h+var_4], eax
---SNIP---
.text:00551F30 mov [esp+70h+var_60], eax
.text:00551F34 call crypto_cipher_NewCTR
.text:00551F39 mov eax, [esp+70h+var_58]
.text:00551F3D mov [esp+70h+var_18], eax
.text:00551F41 mov ecx, [esp+70h+var_5C]
.text:00551F45 mov [esp+70h+var_1C], ecx
.text:00551F49 lea edx, dword_5F0E80
---SNIP---
.text:00551F9F mov esi, [esp+70h+arg_0]
.text:00551FA3 mov [esp+70h+var_70], esi
.text:00551FA6 mov [esp+70h+var_6C], eax
.text:00551FAA mov [esp+70h+var_68], edx
.text:00551FAE mov [esp+70h+var_64], ecx
.text:00551FB2 call os__ptr_File_Read ; read target file

Listing 16: Crypto housekeeping and reading of target file.

Figure 30: Output buffer for read.File for an executable.

The buffer is passed to the XORKeyStream function to be encrypted. The contents of the
original file are then overwritten with this ciphertext via file.WriteAt.

mov [esp+70h+var_60], edi
mov [esp+70h+var_5C], ebx
mov [esp+70h+var_58], ebp
mov ebp, [esp+70h+var_18]
mov [esp+70h+var_70], ebp
call esi ; XORKeyStream - encrypt buffer
mov eax, [esp+70h+arg_0]
mov [esp+70h+var_70], eax
mov ecx, [esp+70h+var_28]
mov [esp+70h+var_6C], ecx
mov ecx, [esp+70h+var_4C]
mov [esp+70h+var_68], ecx
mov ecx, [esp+70h+var_48]
mov [esp+70h+var_64], ecx
mov ecx, [esp+70h+var_40]
mov [esp+70h+var_60], ecx
mov edx, [esp+70h+var_3C]
mov [esp+70h+var_5C], edx
call os__ptr_File_WriteAt ; overwrite target file with ciphertext

Listing 17: Encrypting buffer and overwriting target file.

Targeted Snake Ransomware

W H I T E PA P E R | 2 0

Figure 31: Encrypted buffer after XORKeyStream function call.

Once the file is encrypted, a custom footer/stub is written to the tail of the file.

Stub contents:
•	Header

•	Name from source code

•	RSA-2048 encrypted AES-256 key

Original tail:
00011FF0 60 6B 86 34 9F 8E1F E9 F4 AA F0 35 E5 65 3A `k†d4ŸŽ.éôͣȏ5åe:

Second write operation:
•	4 byte string

Third write operation:
•	EKANS string

First write operation:
•	Header

•	Path to file

•	Encrypted AES key

•	Full path to encrypted file

•	4 byte string

•	EKANS string

Figure 32. Encrypted buffer after XORKeyStream function call.

Once this function completes, the malware then repeats this process on the next file in the
directory.

Targeted Snake Ransomware

W H I T E PA P E R | 2 1

A random 5 character string is appended to the file extension of encrypted files.

Figure 33: Directory listing showing the extensions appended to encrypted files.

Executables (among other file types) are whitelisted/not to be encrypted in System/
Program directories.

Figure 34: Directory listing showing how executables are whitelisted in System/Program Directories.

Ransom Note
Very interestingly, this sample does not display the ransom note on desktop machines at
this point in the program, which we have observed with previous samples. Instead, it
spawns the native windows utility netsh to disable the local firewall (see Figure 34) and
then exits.

Figure 35: Disabling firewall.

Targeted Snake Ransomware

W H I T E PA P E R | 2 2

As mentioned earlier, if the victim machine is a Domain Controller, the malware will drop
the ransom note, and exit without encrypting files.

Figure 36: Ransom note to display if run on a Domain Controller.

We properly detect this sample, along with other variants of SNAKE, through anomalies
that are present as a result of source-code obfuscation (notable mention is a sample
targeting Enel Global).

Figure 37: VMware Advanced Threat Analzyer.

Conclusions
This was clearly a targeted attack, as the malware was tailored to execute in the Honda
network (and largely aimed at servers). The sample is self-defending, as it leverages
source code obfuscation, encrypted strings, and kills AV, EDR, and SIEM components.
Strong encryption is used (RSA with AES-256), and the encryption routine will cause many
applications to cease functioning properly. Each encrypted file has a unique randomly
generated encryption key, which itself is encrypted, and then written to a stub at the end
of each file, along with the “EKANS” string.

Targeted Snake Ransomware

W H I T E PA P E R | 2 3

Appendix
Indicators of Compromise (IoCs)

DNS Query MDS.HONDA.COM

Email from Ransom Note CarrolBidell@tutanota.com

Ransomware:

MD5 ed3c05bde9f0ea0f1321355b03ac42d0

SHA1 e2e14949d0cbc14cd3893da035cc13b509e70a18

SHA256 d4da69e424241c291c173c8b3756639c654432706e7def5025a649730868c4a1

Imphash 96c44fa1eee2c4e9b9e77d7bf42d59e6

SSDEEP 49152:nlpnltflwvk8sd4zs22ahkjzf/3odd8l9akyyxp02+:ntrwkmkff

Targeted Snake Ransomware

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com Copyright © 2020 VMware, Inc.
All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at
http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its subsidiaries in the United States and other jurisdictions. All other
marks and names mentioned herein may be trademarks of their respective companies. Item No: Snake_ransomware_09252020_JR1 9/20

